
Thermo-Electric-Visco-Elastic Material

M. A. Ezzat,1 M. Zakaria,1 A. A. El-Bary2

1Department of Mathematics, Faculty of Education, Alexandria University, El-Shatby 21526, Alexandria, Egypt
2Department of Basic Sciences, Arab Academy for Science and Technology, P.O. Box 1029 Alexandria, Egypt

Received 14 May 2009; accepted 22 January 2010
DOI 10.1002/app.32170
Published online 1 April 2010 in Wiley InterScience (www.interscience.wiley.com).

ABSTRACT: In this work, we introduce the Seebeck
effect in Ohm’s law and Thomson heating effect in gener-
alized Fourier’s law, to the equations of the linear theory
of electro-magneto-thermoviscoelasticity, allowing the sec-
ond sound effects. A normal mode analysis is used. The
resulting formulation is applied to a problem of a rotating
thick plate subject to heat on parts of the upper and lower
surfaces of the plate that varies exponentially with time.
The exact formulas of temperature, displacement, stresses,

electric field, magnetic field, and current density are
obtained. The considered variables are presented graphi-
cally and discussions are made. Seebeck and Peltier effects
on thermoelectric viscoelastic material are studied. VC 2010
Wiley Periodicals, Inc. J Appl Polym Sci 117: 1934–1944, 2010
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INTRODUCTION

The linear theory of elasticity is of paramount im-
portance in the stress analysis of steel, which is the
commonest engineering structural material. To a
lesser extent, linear elasticity describes the mechani-
cal behavior of the other common solid materials,
e.g., concrete, wood, and coal. However, the theory
does not apply to the behavior of many of the new
synthetic materials of the elastomer and polymer
type, e.g., polymethyl-methacrylate (Perspex), poly-
ethylene, and polyvinyl chloride.

With the rapid development of polymer science
and plastic industry, as well as the wide use of
materials under high temperature in modern tech-
nology and application of biology and geology in en-
gineering, the theoretical study and applications in
viscoelastic materials has become an important task
for solid mechanics.

Linear viscoelastic materials are rheological mate-
rials that exhibit time temperature rate-of-loading
dependence. When their response is not only a func-
tion of the current input but also of the current and
past input history, the characterization of the visco-
elastic response can be expressed using the convolu-
tion (hereditary) integral. A general overview of
time-dependent material properties has been pre-
sented by Tschoegl.1 Additionally, a detailed
description of the physical response of linear vois-
coelastic materials has been explained by Lee and

Knauss,2 based on ramp tests to determine the relax-
ation modulus, which is a time-domain linear visco-
elastic response function. The mechanical-model rep-
resentation of linear viscoelastic behavior results was
investigated by Gross,3 Staverman and Schwarzl,4

Alfery and Gurnee5 and Ferry.6

The theory of thermoviscoelasticity and the solu-
tions of some boundary value problems of thermo-
viscoelasticity were investigated by Ilioushin and
Pobedria.7 The works of Biot,8,9 Morland and Lee,10

Tanner,11 and Huilgol and Phan-Thien12 made great
strides in the last decade in finding solutions for
boundary value problems for linear viscoelastic
materials including temperature variations in both
quasistatic and dynamic problems.
The heat conduction equations for the classical lin-

ear uncoupled and coupled thermoelasticity theories
are of the diffusion-type predicting infinite speed of
propagation for heat wave contrary to physical
observations. To eliminate the paradox inherent in
the classical theories, the theories of generalized
thermoelasticity were developed in attempt to
amend the classical thermoelasticity in 1960s. Catta-
neo13 was the first to offer an explicit mathematical
correction of the propagation speed defect inherent
in Fourier’s heat conduction law. Cattaneo’s theory
allows for the existence of thermal waves, which
propagate at finite speeds. The approach used is
known as extended irreversible thermodynamics,
which introduces time derivative of the heat flux
vector, Cauchy stress tensor, and its trace into the
classical Fourier law by preserving the entropy prin-
ciple. Puri and kythe14 investigated the effects of
using the (Maxwell-Cattaneo) model in Stoke’s sec-
ond problem for a viscous fluid. Josef and Pre-
ziosi15,16 give a detail history of heat conduction
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theory. A history of heat conduction also appears in
the review article by Dreyer and Struchtrup.17 They
discuss low temperature heat propagation in dielec-
tric solids where second sound effects are present.

Lord and Shulman18 introduced the theory of gen-
eralized thermoelasticity with one relaxation time by
postulating a new law of heat conduction to replace
the classical Fourier law. This new law contains the
flux vector as well as its time derivative. It contains
also a new constant that acts as a relaxation time.
The heat equation of this theory is of the wave-type,
ensuring finite speeds of propagation for heat and
elastic waves. The remaining governing equations
for this theory, namely, the equations of motions
and the constitutive relations, remain the same as
those the coupled and the uncoupled theories. Using
generalized theory of heat conduction of Lord–
Shulman a large number of research workers made
valuable contributions in magneto-thermo-elasticity
during the last three decades. Öncü and Moodie19,20

made an analysis of the thermal transient generated
by nonuniform sources applied to circular cavities
and circular hole in inhomogeneous conductor. Sher-
ief and Ezzat21 solved a thermal shock half-space
problem using asymptotic expansions. Lately, Sher-
ief and Ezzat22 solved a problem for an infinitely
long annular cylinder, while Ezzat23 solved some
problems for perfectly conducting media.

The theory of electro-magneto-thermoviscoelastic-
ity has aroused much interest in many industrial
appliances, particularly in nuclear devices, where
there exists a primary magnetic field. Various inves-
tigations have been carried out by considering the
interaction between magnetic, thermal, and strain
fields. Analyses of such problems also influence var-
ious applications in biomedical engineering as well
as in different geomagnetic studies. Misra et al.24

have studied a one-dimensional uncoupled magnetic-
thermoelastic problem in a viscoelastic medium
using Maclaurin’s approximation method valid for
only a specific range of parameters. Ezzat et al.25,26

introduced the state-space approach for the model of
two-dimension equations of generalized thermovis-
coelasticity with one and two relaxation times,
respectively. A state-space method for the calcula-
tion of dynamic response of systems made of visco-
elastic materials with exponential-type relaxation
kernels was introduced by Menon and Tang.27

Extension of thermoviscoelastic and magneto-
thermo-viscoelastic problems in generalized theory
are found to be present in the works of many
researchers out of which Mukhopadhyay and Bera,28

Mukhopadhyay,29 Karamany and Ezzat,30 and Rak-
shit and Mukhopadhyay.31 The model of the equa-
tions of generalized thermoviscoelasticity with the
relaxation effects of the volume, with one relaxation
time were established by Ezzat.32 Within the theoret-

ical contributions to the subject are the proofs of
uniqueness theorems under different conditions by
Ezzat and El Karamany33,34 and the boundary ele-
ment formulation was done by El-Karamany and
Ezzat.35 Recently, Ezzat and El-karamany36 and
Ezzat et al.37 solved some problems in magneto-
thermo viscoelasticity of two-temperature.
Quantitative relations for the Seebeck effect were

derived from classical mechanics by Drude and later
on from quantum physics by Sommerfeld. Theory of
the Peltier effect was not developed in such a way,
but the relationship between Seebeck coefficient Sa
and Peltier coefficient

Q
was derived from thermo-

dynamic considerations by Thomson:
Q ¼ SaT.

38

The Peltier effect is used in thermal analysis and
calorimetry for calibration39,40 and heat flow com-
pensation.41 Cooling devices on the Peltier effect are
used for the design of isothermal microcalorime-
ters,42 superconducting magnets,43 and PC process-
ors.44 The Peltier effect is included in theoretical and
laboratory university courses as one of thermoelec-
tric phenomena.45

In this work, we shall formulate the normal mode
analysis to a more general model46 of generalized
electromagneto-thermoviscoelastic-coupled two-
dimensional problem of a thermally and electrically
conducting rotating semispace. The formulas of tem-
perature, displacement, stresses, electric field, mag-
netic field, and current density are obtained. Appli-
cation is used to our problem to get the solution in
the complete form. The considered variables are pre-
sented graphically and comparisons and discussions
are made.

BASIC EQUATIONS

Here, we consider a conducting thermoviscoelastic
solid of finite conductivity r0 permeated by an ini-
tial magnetic field H0. This produces an induced
magnetic field h and induced electric field E, which
satisfy the linear equations of electromagnetism

eijkhk;j ¼ Ji þ eo _Ei; (1)

eijkEk;j ¼ � _Bi; (2)

Bi;i ¼ 0; Di;i ¼ qe; (3)

Bi ¼ l0 Hi þ hið Þ; Di ¼ e0Ei: (4)

The above equations are supplemented by the modi-
fied Ohm’s law for media with finite conductivity47

Ji ¼ r0 Ei þ eijk _ukHj

� �� koTi; (5)

where k0 is the coefficient connecting the tempera-
ture gradient and the electric current density. The
coefficients ko, po, and Sa are interrelated by the
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relations ko ¼ j
po
¼ ropo

To
¼ ¼ roSa at some reference

temperature T0. These constants will be expressed
by different symbols, bearing in mind the above
relations.

The governing equations for generalized magneto-
thermoviscoelastic in elastic rotation medium, when
the effect of Lorentz force is taken into account, con-
sists of:25

1. The equations of motion have the form:

rji;j þ loeijkJkHj

¼ q ui;tt þ XjujXi � X2
j ui þ 2eijkXkuj;t

� �
i
; ð6Þ

2. The equation of energy in the absence of heat
source is given by:

qTo _g ¼ �qi;i; (7)

The entropy g may be written in terms of tempera-
ture, in an isotropic media, as follows

qg ¼ qCE

To
T � Toð Þ þ ce; (8)

The generalized Fourier’s law including the current
density effect is given by:39

qi þ so _qi ¼ �jTi þ poJi; (9)

where p0 is the coefficient connecting the current
density with the heat flow density.

By eliminating g between (7) and (8), and using
(9), we get the equation of heat conduction for the
linear theory as follows

j Tii ¼ qCE
_T þ so€T

� �þ c To _eþ so€eð Þ þ poJj;j; (10)

3. The constitutive equation:

Sij ¼
Z t

0

Rðt� sÞ @eijðx; sÞ
@s

ds ¼ R
_

ðeijÞ; (11)

with the assumptions

rðx_; tÞ ¼ @

@t
rðx_; tÞ ¼ 0; eijðx_; tÞ ¼ @

@t
eijðx_; tÞ ¼ 0;

�1 < t < 0;

Sij ¼ rij � 1

3
rkkdij; eij ¼ eij � e

3
dij; rji ¼ rij;

e ¼ ekk;
(12)

eij ¼ 1

2
ui;j þ uj;i
� �

: (13)

and R(t) is the relaxation function, which can be
taken in the form:25

RðtÞ ¼ 2l 1 � A

Z t

0

e�btta
��1dt

� �
; Rð0Þ ¼ 2l

where 0 < a* <, a > 0, b > 0.
Assuming that the relaxation effects of the volume

properties of the material are ignored, we have:

r ¼ K e� 3aT T � Toð Þ½ �: (14)

Substituting eq. (12) into eq. (11) and using eq. (14),
we get

rij ¼ R
_

eij � e

3
dij

� �
þ Kedij � c T � T0ð Þdij: (16)

From eqs. (6) and (16), it follows that

q€ui þ loerjiJrHj ¼ R
_ 1

2
ui;jj þ 1

6
ei

� �
þ Kei � cT̂i; (17)

Thus, eqs. (1)–(5), (10), (16), and (17) constitute the
field equations and constitutive relations of the lin-
ear theory of generalized magneto-viscoelastic ther-
moelasticity with modified Ohm’s law.

Formulation of the problem

We consider a homogenous, isotropic, magneto-
viscoelastic generalized thermoelasticity in rotation
medium, permeated by an initial magnetic field H0,
acting along the z-axis. The rectangular Cartesian
coordinate system(x, y, z) having origin on the sur-
face x ¼ 0, with x-axis pointing vertically into the
medium is introduced.
For two dimensional problem, we assume the dis-

placement tensor ui, the initial magnetic field Hi,
induced magnetic field hi, the induced electric field
Ei, which is normal to the considered magnetic field,
and the electric current density Ji is parallel to the
electric field as ui ¼ (u, v, 0), X ¼ (0, 0, X), Hi ¼ (0,
0, H0), hi ¼ (0, 0, h), Ei ¼ (E1, E2, 0), and Ji ¼ (J1, J2,
0). The current density components J1 and J2 are
given by:

J1 ¼ ro E1 þ loHo
@v

@t

� �
� ko

@T

@x
; (18)

J2 ¼ ro E2 � loHo
@u

@t

� �
� ko

@T

@y
; (19)

We will neglect all second-order quantities, and
terms of higher orders eqs. (1)–(17) can be written in
the following linearized version, after use the
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following nondimensional variables (dropping the
asterisks for convenience):

x� ¼ cogox; y� ¼ cogoy; u� ¼ cogou;

v� ¼ cogov; t� ¼ c2ogot;

s�o ¼ c2ogos; T� ¼ c T � Toð Þ
qc2o

; h� ¼ goh

roloHo
;

E�
1 ¼

goE1

rocol2oHo
; E�

2 ¼
goE2

rocol2oHo
;

J�1 ¼
goJ1

r2
ocol

2
oHo

; J�2 ¼
goJ2

r2
ocol

2
oHo

;

X� ¼ X
go

; c2o ¼
kþ 2l

q
; go ¼

qco
j

:

The linear equations of electromagnetism

J1 ¼ E1 þ 1

v1

@v

@t
� Ko

@T

@x
; (20)

J2 ¼ E2 � 1

v1

@u

@t
� Ko

@T

@y
; (21)

@J1
@x

þ @J2
@y

¼ �V2

v1

@E1

@x
þ @E2

@y

� �
; (22)

@

@t

@J1
@y

� @J2
@x

� �
¼ 1

v1
r2 � V2 @2

@2t

� �
@E1

@y
� @E2

@x

� �
;

(23)

@E1

@y
� @E2

@x
¼ @h

@t
: (24)

The Equations of motions

@2u

@t2
¼ R

_ 1

2
r2uþ 1

6

@e

@x

� �
þ @e

@x
� @T

@x
þ X2u

þ 2X
@v

@t
þ v21e2J2; ð25Þ

@2v

@t2
¼ R

_ 1

2
r2vþ 1

6

@e

@y

� �
þ @e

@y
� @T

@y
þ X2v

� 2X
@u

@t
� v21e2J1; ð26Þ

The heat conduction equations

r2T ¼ @

@t
þ so

@2

@t2

� �
T þ e1eð Þ þ p1

@J1
@x

þ @J2
@y

� �
; (27)

The components of the stress tensor

rxx ¼ R
_ @u

@x
� 1

2

@v

@y

� �
þ e� T; (28)

ryy ¼ R
_ @v

@y
� 1

2

@u

@x

� �
þ e� T; (29)

rzz ¼ � 1

2
R
_

eþ e� T; (30)

rxy ¼ 3

4
R
_ @u

@y
þ @v

@x

� �
; (31)

where

v1 ¼ r0l0
g0

;V2 ¼ c2o
c2
; e1 ¼ c2To

qc2ogoj
;Ko ¼ loHoko

ce2v21
;

e2 ¼ loH
2
o

qc2o
; p1 ¼ poroce2v1

KHo
:

Eliminating E1and E2 between eqs. (21) and (24), we
obtain

1þ v1
V2

� � @J1
@x

þ @J2
@y

� �
¼ �v1

@u

@y
� @v

@x

� �
� Kor2T;

(32)

r2 � V2 @2

@2t
� v1

@

@t

� �
@J1
@y

� @J2
@x

� �

¼ 1

v1
r2 � V2 @2

@2t

� �
@e

@t
: ð33Þ

Introducing potential functions for each of compo-
nents of displacement and current density defined
by

u ¼ @U
@x

þ @W
@y

; w ¼ @U
@y

� @W
@x

;

J1 ¼ @1
@x

þ @n
@y

; J2 ¼ @1
@y

� @n
@x

; :

(34)

Substituting eq. (34) into eqs. (23)–(25), (32), and
(33), we obtain

2

3
R
_

þ1

� �
r2 � @2

@t2
� X2

� �� �
U ¼ T þ 2X

@W
@t

þ v21e2n;

(35)

1

2
R
_

r2 � @2

@t2
� X2

� �� �
W ¼ �2X

@U
@t

� v21e21; (36)

r2 � @

@t
þ so

@2

@t2

� �� �
T ¼ @

@t
þ so

@2

@t2

� �
e1r2U

þ p1r21; ð37Þ
1þ v1

V2

� �
1 ¼ �v1W� KoT; (38)

r2 � V2 @2

@2t
� v1

@

@t

� �
n ¼ 1

v1
r2 � V2 @2

@2t

� �
@U
@t

: (39)

Equations (36) and (37) can be written as, after elimi-
nation f by using eq. (38)
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1

2
R
_

r2 � @2

@t2
þ v1e3 � X2

� �� �
W ¼ �2X

@U
@t

þ e3KoT;

(40)

1þ Kop2ð Þr2 � @

@t
þ so

@2

@t2

� �� �
T

¼ @

@t
þ so

@2

@t2

� �
e1r2U� p2v1r2W; ð41Þ

where

e3 ¼ V2v21
V2 þ v1

e2; p2 ¼ V2v21
V2 þ v1

p1:

Normal mode analysis

We consider here that all considered variables can
be expressed at the form of plane wave by express-
ing it in the following exponential form:

Fðx; y; tÞ ¼ F�ðxÞ expðxtþ iqyÞ; (42)

where x is the complex time constant (frequency), q
is the wave number in y-axis direction, i is the imag-
inary unit and F* is the amplitude of the represented
plane waves to the considered variables.

Using eq. (42), we can obtain the following equa-
tions from eqs. (35), (37), (39)–(41):

2

3
R
_

þ1

� �
D2 � q2
� �� x2 � X2

� �� �
U� ¼ T�

þ 2xXW� þ v21e2n
�; ð43Þ

D2 � V2x2 þ v1xþ q2
� �	 


n�

¼ x
v1

D2 � V2x2 þ q2
� �	 


U�: ð44Þ

1

2
R
_

D2 � q2
� �� x2 þ v1e3 � X2

� �� �
W�

¼ �2xXU� þ e3KoT
�; (45)

1þ Kop2ð Þ D2 � q2
� �� xþ sox

2
� �	 


T�

¼ e1 xþ sox
2

� �
D2 � q2
� �

U�

� p2v1 D2 � q2
� �

W�; ð46Þ

On eqs. (43)–(46) and after some simplification, we
obtain

D8 � AD6 þ BD4 � CD2 þ E
	 


U�;W�;T�; n�ð Þ ¼ 0;

(47)

where

A ¼ 1

r R
_

K1

R
_

Ko n1 þ n3rþ v1e2xf g þ rn6 � se1ð Þ þ 2r K1v1e3p2 þ K1n4ð Þ
h i

;

B ¼ 1

r R
_

K1

K1 2e3n7 þ n8ð Þ þ n1n6 R
_

þ n3 R
_

þ2n4
� �

rn6 � se1ð Þ � n5 R
_

e1sþ n6 R
_

v1xe2

þ4v1xXp2

" #
;

C ¼ 1

r R
_

K1

2Koe3
n1v1p2ð n3 þ q2

� �þ n2v
2
1xe2p2 þ n3 q2rv1p2 þ 2xXe1s

� �
þ x 2n5Xe1sþ q2v21e2p2

� �
0
@

1
A

þ n2n6 R
_

v1xe2 þ 2K1 n1n3n4 þ x n2n4v1e2 þ 4n3xXÞð Þð Þ

þ n1n6 n3 R
_

þ2n4
� �

þ n3 2n4 n6r� e1sð Þ � n5 R
_

e1sþ 4v1xXp2
� �

þ 2 n4 n5e1 � n6v1xe2ð Þð Þ � 4Xx 2n6Xxþ q2v1p2
� �

2
666666666664

3
777777777775
:

E ¼ 1

r R
_

K1

Koe3 n1n3q
2v1p2 þ n2q

2v21xe2p2 þ 2n3n5xXe1s
� �þ n1n3n4n6

þ n2n4n6v1xe2 þ n3 2xX 2n6xXþ q2v1p2
� �� n4n5e1s

� �
" #

:

n1 ¼ r q2
� �þ x2 � X2

� �
; n2 ¼ V2x2 þ q2; n3 ¼ V2x2 þ v1xþ q2;

n4 ¼ 1

2
R
_

q2 þ x2 þ v1e3 � X2
� �

;

n5 ¼ sq2; n6 ¼ K1q
2 þ s; s ¼ xþ sox

2
� �

;K1 ¼ 1þ Kop2ð Þ; r ¼ 2

3
R
_

þ1

� �
;

n7 ¼ n1v1p2þ n3 þ q2
� �

rv1p2ð Þ þ v21xe2p2 þ 2Xxe1r;

n8 ¼ n1 n3 R
_

þ2n4
� �

þ n2 R
_

v1xe2 þ 2 n3n4rþ n4v1xe2 þ 4x2X2
� �

:
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The solution of the eq. (47) satisfying the radiation
conditions that U*, w*, T*, and n* tend to zero as x
tends to infinity can be written as

U�;W�;T�; n�ð Þðx; q;xÞ ¼
X4
i¼1

1; ‘1i; ‘2i; ‘3ið ÞAie
�mix;

(48)

where Ai(q,x) are some parameters depending on q
and x,

‘1i ¼
2 Koe1e3s m2

i � q2
� �� 2xX K1m

2
i � n6

� �� �
2Kov1e3p2 m2

i � q2
� �þ K1m2

i � n6
� �

R
_

m2
i � 2n4

� � ;

‘2i ¼
m2

i � q2
� �

e1 R
_

m2
i s� 2 e1n4s� 2v1xXp2ð Þ

� �
2Kov1e3p2 m2

i � q2
� �þ K1m2

i � n6
� �

R
_

m2
i � 2n4

� � ;

‘3i ¼ xm2
i � n2

v1 m2
i � n3

� � ; i ¼ 1; 2; 3;

and mi (i ¼ 1, 2, 3) are the characteristic roots of the
characteristic eq. (47), which is

m8 � Am6 þ Bm4 � Cm2 þ Em ¼ 0;

Now, for obtaining the other potential function of
the corresponding current intensity substituting in
eq. (38) after using eq. (42)

1�ðx; q;xÞ ¼
X4
i¼1

‘4iAie
�mix; (49)

where

‘4i ¼ �V2 v1‘1i þ Ko‘2ið Þ
V2 þ v1

;

By using eq. (34) into (42), we can obtain the dis-
placement components and current density as fol-
lows

u�ðx; q;xÞ ¼
X4
i¼1

iq‘1i �mið ÞAie
�mix; (50)

v�ðx; q;xÞ ¼
X4
i¼1

iqþmi‘1ið ÞAie
�mix; (51)

J�1ðx; q;xÞ ¼
X4
i¼1

iq‘3i �mi‘4ið ÞAie
�mix; (52)

J�2ðx; q;xÞ ¼
X4
i¼1

iq‘4i þmi‘3ið ÞAie
�mix: (53)

The induced electric field components E1 and E2 and
induced magnetic field h can be obtained by substi-

tuting from (48), (50), and (51) into (26), (27), and
(22) respectively, after using eq. (42), we get

E�
1ðx; q;xÞ

¼ 1

v1

X4
i¼1

iq v1‘3i � xð Þ�mi v1‘4iþv1Ko‘2iþx‘1ið Þ½ �Aie
�mix;

ð54Þ
E�
2ðx; q;xÞ

¼ 1

v1

X4
i¼1

iq v1‘4i þ x‘1i þ v1Ko‘2ið Þþmi v1‘3i�xð Þ½ �Aie
�mix;

ð55Þ

h�ðx; q;xÞ ¼ 1

v1

X4
i¼1

‘3i � xð Þ m2
i � q2

� �
Aie

�mix; (56)

Throughout the eqs. (28)–(31), and (50), (51), after
using eq. (47), we can obtain the components of
stresses:

rxx ¼ 1

2

X4
i¼1

q2 R
_

�2
� �

þ 2m2
i 1þR

_� �
�3iqmi R

_

‘1i

h i
Aie

�mix;

(57)

ryy ¼ 1

2

X4
i¼1

m2
i 2�R

_� �
� 2q2 1þR

_� �
þ3iqmi R

_

‘1i

h i
Aie

�mix;

(58)

rzz ¼ 1

2

X4
i¼1

2‘2i þ 2� R
_� �

iqþmið Þ
h i

Aie
�mix;

rxy ¼ �
X4
i¼1

‘1i q
2 þm2

i

� �� 2iqmi

� �
Aie

�mix: (59)

We shall now use the boundary conditions of the
application to evaluate the unknown parameters Ai

(i ¼ 1, 2, 3, 4, 5).

APPLICATION

We consider a magneto-viscoelastic thermoelasticity
material in elastic rotating medium occupying the
semispace region:

R ¼ fðx; y; zÞ : x � 0;�1 < y; z < 1g

and the other semispace R* ¼ {(x, y, z): x � 0, �1 <
y, z < 1}, is a vacuum, let the surface of R is trac-
tion free and subjected to decreasing thermal source
with time, which affects on a narrow band of width
2L surrounding z-axis and R* is kept at room tem-
perature To and the boundary surface between R
and R* is thermally isolated such that the thermal
source affects only on R.
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We consider the induced magnetic and electric
field intensities in free space. We denote these by h0,
E10, and E20, respectively, hence, Maxwell’s equa-
tions for region R* in the nondimensional form, can
be simplified to the following:

@ho
@y

¼ V2 @E1o

@t
; (60)

@ho
@x

¼ �V2 @E2o

@t
: (61)

@E1o

@y
� @E2o

@x
¼ @ho

@t
: (62)

Once again we apply the normal mode method on
these variables to conclude the following equations

h�oðxÞ ¼ A5 q;xð Þenx; (63)

E�
1oðxÞ ¼

iq

V2x
A5 q;xð Þenx; (64)

E�
2oðxÞ ¼ � n

V2x
A5 q;xð Þenx; (65)

where A5(q,x) is a parameter depending on q and x,
and n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 þ V2x2
p

We apply the following boundary conditions for
the purpose of determination of the unknown pa-
rameters Ai(q,x), (i ¼ 1, 2, 3, 4, 5)

1. Thermal boundary condition
Let f(y,t) be a known function so that

Tð0; y; tÞ ¼ f ðy; tÞ; or
T�ð0; q; tÞ ¼ f �ðq; tÞ (66)

2. Mechanical boundary conditions
Under the assumption that the surface of R is
traction free, we can get the following condi-
tions rxx(0, y, t) ¼ rxy(0, y, t) ¼ 0.

3. Electromagnetic boundary conditions
The transverse components of the electric field
intensity are continuous across the boundary
surface

E2ð0; y; tÞ ¼ E20ð0; y; tÞ: (67)

The transverse components of the magnetic field
intensity are continuous across the boundary surface

hð0; y; tÞ ¼ h0ð0; y; tÞ: (68)

With the help of eqs. (48), (56), (57), (59), and (66)–
(68), we obtained five equations in four unknown
parameters Ai (i ¼ 1, 2, 3, 4, 5) in the form:

f �ðx; q;xÞ ¼
X4
i¼1

‘2iAie
�mix; (69)

0 ¼
X4
i¼1

‘3i � xð Þ m2
i � q2

� �
Ai � v1A5; (70)

0 ¼
X4
i¼1

½iq v1‘4i þ x‘1i þ v1Ko‘2ið Þ

þmi v1‘3i � xð Þ�Ai þ nv1
V2x

A5 ð71Þ

0 ¼
X4
i¼1

q2 R
_

�2
� �

þ 2m2
i ð1þ R

_

Þ � 3iqmi R
_

‘1i

h i
Ai;

(72)

0 ¼
X4
i¼1

‘1i q
2 þm2

i

� �� 2iqmi

� �
Ai; (73)

Solving eqs. (69)–(73), we obtain the parameters Ai (i
¼ 1, 2, 3, 4, 5)

Ai ¼ �1ð Þiþ1 f � x; qð Þ‘�2i
‘21‘�21 � ‘22‘�22 þ ‘23‘�23 � ‘24‘�24

; i ¼ 1; 2; 3; 4

A5 ¼ 1

v1

X4
i¼1

‘3i � xð Þ m2
i � q2

� �
Ai;

where

‘5i ¼ 1

v1
‘3i � xð Þ m2

i � q2
� �

þ V2x
nv1

iq v1‘4i þ x‘1i þ v1Ko‘2ið Þ þmi v1‘3i � xð Þ½ �

‘6i ¼ q2 R
_

�2
� �

þ 2m2
i 1þ R

_� �
� 3iqmi R

_

‘1i

‘7i ¼ ‘1i q
2 þm2

i

� �� 2iqmi i ¼ 1; 2; 3; 4

‘�21 ¼ ‘52 ‘63‘74 � ‘64‘73ð Þ þ ‘53 ‘64‘72 � ‘62‘74ð Þ
þ ‘54 ‘62‘73 � ‘63‘72ð Þ;

‘�22 ¼ ‘51 ‘63‘74 � ‘64‘73ð Þ þ ‘53 ‘64‘71 � ‘61‘74ð Þ
þ ‘54 ‘61‘73 � ‘63‘71ð Þ;

‘�23 ¼ ‘51 ‘62‘74 � ‘64‘72ð Þ þ ‘52 ‘64‘71 � ‘61‘74ð Þ
þ ‘54 ‘61‘72 � ‘62‘71ð Þ;

‘�2 ¼ ‘51 ‘62‘74 � ‘64‘72ð Þ þ ‘52 ‘64‘71 � ‘61‘74ð Þ
þ ‘54 ‘61‘72 � ‘62‘71ð Þ; ð74Þ

By determining these parameters, we have com-
pleted solving the problem and now we go to the
discussion.

DISCUSSION

The analysis is conducted for a magnesium crystal-
like material. Following Ref. 24, the values of physi-
cal constants are
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Figure 1 Temperature profiles various values of K0 and
p1 at s0 ¼ 0.02.

Figure 2 Horizontal displacement profiles various values
of K0 and p1 at s0 ¼ 0.02.

Figure 3 Normal displacement profiles various values of
K0 and p1 at s0 ¼ 0.02.

Figure 4 Horizontal stresses profiles various values of K0

and p1 at s0 ¼ 0.02.

k ¼ 9:4� 1010 Nm�2; l ¼ 4:0� 1010 Nm�2; k ¼ 1:0� 1010 Nm�2;
q ¼ 1:74� 103 gm=cm3; c ¼ 0:779� 10�9N; j ¼ 0:2� 10�15 cm2;

CE ¼ 1:04� 103 kgm�3; K� ¼ 1:7� 102 Jm�1s�1deg�1; To ¼ 298 K;

m ¼ 3:68� 106Nm�21deg�1; so ¼ 0:02 no ¼ 0:05:

we consider the following electric constants for our
problem

r0 ¼ 9.36 � 105 Col2/Cal cm sec, H0 ¼ 105 Col/
cm sec

l0 ¼ 4p � 10�2 dyne sec2/Col2, e0 ¼ 10�18/36p
Col2/dynecm2.

The function f(y, t) applied on the boundary, is
taken as follows f(y, t) ¼ y0H(L�|y|)exp(�bt), where
y0 and b are constants and H is the Heaviside unit
step function, putting f(x, t) in normal mode form,
we obtain that f �ðq;xÞ ¼ ho cos q‘�i sin a‘½ �

exp xþbð Þt½ � ; �L � ‘ � L;
and t is a certain value of time.

We have that x ¼ x0 þ ix0 then ext ¼ exot(cosx1t
þ i sinx1t), so for small values of time, we can take
x is real (i.e., x ¼ x0), in numerical calculations, the
other constants of the problem is taken as follows x0

¼ 2, q ¼ 2, s0 ¼ 0.02, y0 ¼ 1, b ¼ 1, k2 ¼ 0.2, and X
¼ 0.6.

The computations are carried out at time t ¼ 0.1,
relaxation time so ¼ 0.02, strip width 2L ¼ 0.9 � 103

on the surface plane z ¼ 0. The distribution of non-
dimensional variables under two different cases at

X ¼ 0 and X ¼ 0.6 have been shown in Figures 1–9.
In these figures the solid line represents magneto-
viscoelastic-generalized thermoelastic in a conduct-
ing medium with classical Ohm’s and Fourier’s laws
effects (Ko ¼ 0, p1 ¼ 0), while the dot line represents
magneto-viscoelastic-generalized thermoelastic me-
dium with modified Ohm’s and Fourier’s laws
effects (Ko ¼ 0.3, p1 ¼ 0.8).
The important phenomenon observed in all com-

putations is that the solution of any of the consid-
ered functions vanishes identically outside a
bounded region of space surrounding the heat
source at a distance from it equal to x*(t); say x*(t) is
a particular value of x depending only on the choice
of t and is the location of the wave front. This dem-
onstrates clearly the difference between the solution
corresponding to using Fourier heat equation (so ¼
0.0) and to using the generalized Fourier case (so ¼
0.02). In the first and older theory, the waves propa-
gate with infinite speeds, so the value of any of the
functions is not identically zero (though it may be
very small) for any large value of x. In non-Fourier
theory the response to the thermal and mechanical
effects does not reach infinity instantaneously but
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remains in a bounded region of space given by 0 <
x < x*(t) for the semispace problem.

Figure 1 studying the effect of parameters K0, p1
on the temperature. We noticed from this figure that
the four curves start from the origin point then
decreases till it tends to zero at x > 1.5 and the val-
ues of T in modified Ohm’s and Fourier’s laws are
higher than these in the classical case.

The components of displacement u and v are illus-
trated graphically in Figures 2 and 3. It is noticed
that the curve of horizontal displacement largest in
modified Ohm’s and Fourier’s laws than these in the
classical case, while the normal displacement in the
event of extended and decreases in the case with
modified Ohm’s and Fourier’s laws.

It can be found from Figures 2 and 4 that rotation
acts to significantly decrease the magnitude of the
real part of displacement and stress.

In Figures 4 and 5 it is noticed that the absolute val-
ues of normal stresses rxx are increased in the modi-
fied model as compared with the values for classical
case, while shearing stresses rxy is decreases.

Figures 6 and 7 describe the variations of the
induced magnetic and electric fields, respectively, it
is evident that the values of both fields are increased
in the modified model.

The Seebeck and Peltier effects are shown to be
closely related within the new thermodynamic
model applied recently to the quantitative theory of
the Seebeck coefficient. In this work, the model was

developed for the evaluation of the Seebeck and
Peltier coefficients. The gradual decrease of thermo-
power with temperature as shown in Figure 8 has
also been reported by Huston,48 Ambia et al.49 and
Patankar et al.50 In Figure 9, we observe that the
Peltier coefficient is proportional to the temperature
at constant value of Seebeck coefficient. These results
agrees with the expectation by the first Thomson
relation

Q ¼ SaT.
51

CONCLUSIONS

The trend of variations of the temperature distribu-
tion T, transverse displacement u, normal displace-
ment v, normal stress rxx and shearing stresses rxy

are quite different on the application of new model
and old model. The medium, which is taken, is
affected by parameters K0, p1, and magnetic field,
more on the application of modified Ohm’s and
Fourier’s laws in comparison to the application of
classical model. The increasing in the values of tem-
perature may be explained as the lost heat generat-
ing from the movement of electric current, this heat

Figure 5 Shearing stresses profiles various values of K0

and p1 at s0 ¼ 0.02.

Figure 6 Induced magnetic field profiles various values
of K0 and p1 at s0 ¼ 0.02.

Figure 7 Induced electric field profiles various values of
K0 and p1 at s0 ¼ 0.02.

Figure 8 Variation of Seebeck coefficient with
temperature.
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may be the main reason to make that the deforma-
tion of the medium tends to be normal, whereas the
components of electric and magnetic fields record
values greater than the values recorded in the classi-
cal model.

NOMENCLATURE

Di electric displacement tensor
Ei induced electric field tensor
Ji current density tensor
Hi magnetic intensity tensor
Hi induced magnetic field tensor
H0 initial magnetic field vector
e0 dielectric constant
l0 magnetic permeability
qe charge density
r0 electric conductivity
eijk permutation symbol
k,l Lame’s constants
q Density
CE specific heat at constant strain
t time
T absolute temperature
T0 reference temperature chosen so that |T � T0|

� 1
eij components of strain tensor
Sij components of stress deviator tensor
eij components of strain deviator tensor
ui components of displacement tensor
Xi angular velocity tensor
R relaxation function
k Thermal conductivity
A,b,a*empirical constants
K kþ 2

3 l bulk modulus
s0 relaxation time
aT coefficient of linear thermal expansion

Q the strength of the applied heat source per
unit mass

c 3K aT
c2 1

eolo
light speed

d0 nondimensional constant for adjustment the
reference temperature

c2o K/q
g0 (qcE)/K
e (d0c)/(qcE)
Sa Seebeck coefficient
po Peltier coefficient
k0

j
po
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